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Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. We study a multiple-terminal joint source-
channel coding problem, where two remote correlated Gaussian
sources are transmitted over a Gaussian multiple-access channel
with two transmitters. Each transmitter observes one of the
sources contaminated in Gaussian noise. The receiver wishes to
reconstruct both sources. We derive necessary conditions and
sufficient conditions for the receiver to be able to reconstruct
the sources with given expected squared-error distortions. These
conditions establish the optimality of uncoded transmission below
some signal-to-noise ratio (SNR) threshold, and they also estab-
lish the high-SNR asymptotics. To achieve the latter, a coding
scheme is proposed that superimposes analog uncoded trans-
mission and digital combined source-channel Gaussian vector
quantization.

I. INTRODUCTION

Shannon’s source-channel separation theorem [1] states that
the problem of communicating a source over a noisy channel
can be decomposed into lossy source compression and noisy
channel coding without any penalty in performance. The
classical result leads to an elegant paradigm of designing
communication systems, namely, source-channel separation.
Such separation, however, no longer holds in networks and
multi-user settings, and the optimal code design involves
jointly considering source and channel coding. In the state
of the art, only a limited list of joint source-channel coding
problems in the multi-user setting are studied and solved. One
of the solved problems is sending jointly Gaussian sources
over a Gaussian broadcast channel [2][3], where the achievable
distortion region is characterized completely. On the other
hand, one of the simple yet open problems is sending jointly
Gaussian sources over a Gaussian multiple access channel.
In [4] a necessary condition and several sufficient conditions
are derived and the high SNR asymptotic is characterized
for the optimal achievable distortion. Yet, the exact answer
to finding the optimal distortion region in a general setting
remains unknown to date.

In some applications the sources are corrupted by noise
before being observed by the encoders, and the reconstructions
are corrupted after being produced by the decoders. Such a
problem was first investigated by Dobrushin and Tsybakov [5]
who showed that the problem can be reduced to the classical
one considered by Shannon [1] with a modified distortion.

Wolf and Ziv [6] investigated the same setting with squared-
error distortion. They showed that the problem reduces to the
classical one with the same distortion measure but with the
reconstruction target now being the conditional expectation
of the remote source given the observation. Moreover, the
optimal scheme is the same as the scheme in a system where
the observation is the conditional expectation of the remote
source given the observation. This result implies the optimality
of estimation-coding separation, where the estimation of the
remote source is separated from the joint source-channel
coding.

A natural question is whether estimation-coding separation
is also optimal in multi-user scenarios (with squared-error dis-
tortion). In this paper we study the problem of sending remote
Gaussian sources over a Gaussian MAC and answer this ques-
tion in the negative. This conclusion is not surprising because
the observations are correlated and hence the estimation at the
encoder based on its own observation is not sufficient. It turns
out that—unlike the direct source-channel coding problem
studied in [4], where a vector quantization scheme suffices to
achieve the high SNR asymptotic distortion—such a scheme
does not suffice in the remote setting. Instead, we propose a
superposition of vector quantization and uncoded scheme.

The rest of the paper is organized as follows. We first
formulate our problem in Section II, briefly review Wolf and
Ziv’s result in the point-to-point case, and explain why the
proof cannot be extended to our scenario. Then we show
that our problem is equivalent to one where the reconstruc-
tion targets are the conditional expectation of the remote
sources given both observations. Since our setting is Gaussian,
these conditional expectations are linear combinations of the
observations. In Section III we derive a necessary and two
sufficient conditions for the achievabilty of a distortion pair,
and we show that uncoded scheme is optimal below some
SNR threshold. We also show that a superposition scheme is
asymptotically optimal at high channel SNR. Some concluding
remarks are presented in Section IV.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Problem Formulation

We consider the set-up depicted in Fig. 1(a), where the
remote sources are jointly Gaussian with zero mean and



covariance matrix Kw =
[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
, and Encoder i’s

observation si = wi + zi, zi ∼ N (0, Ni), i = 1, 2, where the
noises z1, z2 are independent.

The encoders communicate with the decoder via a Gaussian
multiple access channel, with power constraint Pi, for i = 1, 2,
and the additive Gaussian noise z ∼ N (0, No). We focus
on the matched-bandwidth set-up, where the sources produce
symbols at the same rate at which the channel is used.
Throughout this paper, we use boldface x to denote a sequence
of i.i.d. realizations of x’s, with an implicit block length which
can be arbitrarily large.
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Fig. 1. System Models

B. Point-to-point case: Decomposition

Before dealing with our problem, we first revisit the point-
to-point remote joint source-channel coding problem consid-
ered in [5] and [6].

Consider the problem that a remote source (w) is observed
by an encoder (as s) which communicates to a decoder through
a point-to-point memoryless channel (input x and output y) so
that the decoder can reconstruct the source (ŵ) up to a certain
distortion. If the distortion measure is squared-error distortion,
we can decompose the end-to-end distortion as [6]

E
[
‖w − ŵ‖2

]
= E

[
‖w − v‖2

]
+ E

[
‖v − ŵ‖2

]
= MMSE [w|s] + E

[
‖v − ŵ‖2

]
where v = E [w|s]. This follows because w↔ v↔ ŵ forms
a Markov chain for all encoding and decoding functions. From
the above decomposition, we see that the optimal encoding is
to first estimate the remote source w from the observation
s, and to then design an optimal source-channel code for the
estimator output v.

Why need the above decomposition not hold in our multi-
terminal setting? The key to the decomposition is the Markov
chain w ↔ E [w|s] ↔ ŵ. In our setting, the corresponding
Markov chain is wi ↔ E [wi|s1, s2] ↔ ŵi, for i = 1, 2.
Encoder i, however, only has access to si, and hence can-
not construct E [wi|s1, s2]. If we replace E [wi|s1, s2] by

E [wi|si], then the Markov condition need no longer hold, and
hence nor the decomposition.

Under the Gaussian framework considered in this work,
since the optimal estimator is linear, the MMSE estimation
E [wi|si] is just a scaled version of the observation si.
Therefore, to understand whether the decomposition holds
or not, it suffices to study whether we can directly reuse
the encoding/decoding blocks in [4] which are shown to be
optimal in various regimes for the direct joint source channel
coding problem. It turns out that the answer is no.

For simplicity, in the rest of this paper we shall focus on
the symmetric set-up, where σ2

1 = σ2
2 =: σ2, N1 = N2 =: N ,

and P1 = P2 =: P . In this seetting ηc := P/No > 0 and
ηs := σ2/N > 0 denote the signal-to-noise ratio in the channel
and in observing the source respectively.

C. Equivalence

To facilitate the discussion, we begin by showing that the
remote Gaussian joint source-channel coding problem is equiv-
alent to a direct one with linear functions as reconstruction
target.

Lemma 1 (Equivalence): The above problem is equivalent
to reconstructing v1 and v2 at the receiver with distortion D1−
δ1 and D2 − δ2 respectively, where

vi = E [wi|s1, s2] , δi = MMSE [wi|s1, s2] , i = 1, 2.

Proof: The proof uses the same technique as that in
Section VI-B of [7] for the remote source coding problem,
and is pretty straightforward: due to the Markov chain wi ↔
E [wi|s1, s2] ↔ ŵi, the distortion can be decomposed as
follows:

NDi = E
[
‖wi − ŵi‖2

]
= E

[
‖wi − vi‖2

]
+ E

[
‖vi − ŵi‖2

]
= MMSE [wi|s1, s2] + E

[
‖vi − ŵi‖2

]
= Nδi + E

[
‖vi − ŵi‖2

]
, i = 1, 2,

and hence the equivalence.
For the symmetric Gaussian setting treated in this paper, we

note that v1 = αs1 + βs2, v2 = βs1 + αs2, where

α =
ηs
(
1 + (1− ρ2)ηs

)
1 + 2ηs + (1− ρ2)η2

s

, β =
ρηs

1 + 2ηs + (1− ρ2)η2
s

.

Note that α = β ⇐⇒ 1 + (1 − ρ2)ηs = ρ ⇐⇒ (1 −
ρ) (1 + (1 + ρ)ηs) = 0 ⇐⇒ ρ = 1, since ηs > 0. For
the case of ρ = 1, [8] provides the complete solution and
shows that uncoded transmission is optimal. Therefore, we
shall consider the case α 6= β.

We also note that scaling α and β by a constant will simply
scale the distortion by the square of the constant, and will not
change the optimal design of the coding scheme. Therefore for
mathematical convenience, in the rest of this paper we shall
without loss of generality consider the scaled version of α and
β such that the variance of v1 and v2 is equal to the original
source: (ρs is the correlation coefficient of (s1, s2))

σ2
s = Var [vi] = (α2 + β2 + 2ρsαβ)σ2

s

⇐⇒ α2 + β2 + 2ρsαβ = 1. (1)



III. MAIN RESULTS

By Lemma 1, we now consider the setting with two cor-
related Gaussian sources s1 and s2 with covariance matrix

Ks = σ2
s

[
1 ρs
ρs 1

]
, each of which is observed by an

encoder individually. The two encoders communicate to a
decoder through a symmetric Gaussian MAC with power
constraints P at both transmitters and additive noise variance
No. The decoder aims to reconstruct v1 = αs1+βs2 and v2 =
βs1 + αs2 up to distortion Ds, where α > 0, β > 0, α 6= β,
and they satisfy (1). See Fig. 2(a) for an illustration.

ENC1

ENC2

zs1

s2 x2

x1

DEC
y v̂1

v̂2

(Ds)

(Ds)

(P )

(P )

(a) System Model

ENC

z
s1

s2 DEC
y v̂1

v̂2

x

(b) Enhanced System

ENC

z
v1

v2 DEC
y v̂1

v̂2

x

(c) Equivalent Enhanced System

Fig. 2. Symmetric Setting Considered

Before proceeding, we first compute a couple of parameters
specified by the new problem of reconstructing linear functions
v1 and v2, as follows:

σ2
v := Var [v1] = Var [v2]

(a)
= σ2

s

ρv :=
Cov [v1, v2]√

Var [v1] Var [v2]
= 2αβ +

(
α2 + β2

)
ρs

(b)
= ρs + 2αβ

(
1− ρ2

s

)
,

where (a) and (b) are both due to condition (1).

A. Outer Bound

Let R(D;σ, ρ) denote the rate distortion function of sending
a bivariate zero-mean Gaussian source with symmetric covari-

ance matrix
[
σ2 ρσ2

ρσ2 σ2

]
. In particular,

R(D;σ, ρ) :=


1
2 log+

(
σ4(1−ρ2)

D2

)
, D ≤ σ2(1− ρ)

1
2 log+

(
σ2(1+ρ)

2D−(1−ρ)σ2

)
, D > σ2(1− ρ)

(2)

Below we give a necessary condition for Ds to be achiev-
able in Fig. 2(a).

Theorem 1: If Ds is achievable, then

R (Ds;σv, ρv) ≤
1
2

log (1 + 2 (1 + ρs) ηc) , (3)

where σv = σs and ρv = ρs + 2αβ(1− ρ2
s).

Proof: Consider an enhanced system in Fig. 2(b) where
the two encoders merge into a joint encoder. If Ds is achiev-
able in the original system, so is it in the enhanced system.
Since α 6= β, we can further see that it is equivalent to the

system in Fig. 2(c), where the encoder takes v1 and v2 as
inputs.

Apply the converse argument in [4] (where Witsenhausen’s
maximal correlation property [9] is used) to show that for
the original system, the maximum power of the aggregate
transmission of the two transmitters is P1+P2+2ρs

√
P1P2 =

2P (1 + ρs). Hence for the enhanced system in Fig. 2(b) and
(c), the power constraint at the transmitter is 2P (1 + ρs).

In the enhanced system in Fig. 2(c), the optimal distortion
is known to satisfy (3) due to the optimality of source-channel
separation in point-to-point settings and the calculations done
in [4].

The following corollary gives the high-SNR asymptotic
behavior of the lower bound on the achievable distortion
derived from the previous theorem. Its proof is straightforward
so we omit it here.

Corollary 1: Denote the distortion lower bound in Theo-
rem 1 by Ds. Then we have

lim
ηc→∞

√
ηcD

s = σ2
s

√
1− ρs

2

∣∣α2 − β2
∣∣ .

In the next subsection, we shall see that this high-SNR
asymptotic lower bound is actually achievable.

B. Inner Bounds

We first present an inner bound based on uncoded transmis-
sion.

Theorem 2 (Uncoded Scheme Inner Bound): A sufficient
condition for Ds to be achievable is

Ds ≥ σ2
s

{
1 + ηc (α− β)2

(
1− ρ2

s

)
1 + 2ηc(1 + ρs)

}
.

Proof: Each encoder simply scales its observation to
match the power constraint and sends it over the channel.
The resulting end-to-end distortion can be calculated easily
because all the random variables are jointly Gaussian.

Remark 1: The optimality of the uncoded lower bound is
obtained whenever the above distortion upper bound

σ2
s

{
1 + ηc (α− β)2

(
1− ρ2

s

)
1 + 2ηc(1 + ρs)

}
> σ2

v(1− ρv)

⇐⇒ ηc <
ρs + 2αβ(1− ρ2

s)
(α− β)2(1− ρ2

s)
(6)

since σ2
v(1 − ρv) = σ2

s

(
1− ρ2

s

)
(α− β)2. Hence, we char-

acterize the channel SNR threshold below which uncoded
scheme is optimal. Note that the threshold given in (6) depends
on ρs, α, and β. Note that when αβ = 0, we reproduce the
result in [4]. When α = β we reproduce the result in [8],
where uncoded scheme is shown to be optimal.

Next we want to explore the high-SNR asymptotic perfor-
mance. In [4], it is shown that a vector-quantization scheme
achieves the high-SNR asymptotic performance in the direct
Gaussian joint source channel coding problem over Gaussian
MAC. The following theorem extends this result to the remote
setting (equivalently, direct setting with linear functions as



2Rs ≤
1
2

log

Kz + 2
(
γd + γa

1+ρs
1+ρs(1−2−2Rs )

)2

σ2
s

(
1− 2−2Rs

) (
1 + ρs

(
1− 2−2Rs

))
Kz

(
1− ρ2

s (1− 2−2Rs)2
)

 (4)

2R∗s =
1
2

log

 2ηc
(
1 + ρs

(
1− 2−2R∗s

))(
1− ρ2

s (1− 2−2R∗s )2
)

+ κηλc (1 + ρs) (1− ρs (1− 2−2R∗s )) 2−2R∗s


⇐⇒ 2−2R∗s =

√
1− ρs (1− 2−2R∗s )

2

[
1 +

(1 + ρs) (κηλc 2−2R∗s )
1 + ρs (1− 2−2R∗s )

]
1
√
ηc
. (5)

targets of reconstruction), and shows that the coding system
has to be re-designed for the remote setting.

Before stating the theorem, we start with the description of
the scheme. The scheme we use is the superposition scheme
proposed in Section IV-E of [4]. Such superposition scheme
also appears in [10] for sending a Gaussian source over a
Gaussian point-to-point channel and in [3] for sending jointly
Gaussian sources over Gaussian broadcast channel, and it is
recently extended in [11] to a more general setting. Each
encoder, say, i, first vector-quantizes its observation si using
a rate-Ri code and obtains ui, for i = 1, 2. Then each
transmitter, say Tx i, transmits a linear combination of its
observation si and the VQ output ui, so that the overall
transmission from Tx i is

xi = γasi + γdui, i = 1, 2,

where the subscript “a” and “d” denote analog and digital
respectively. The vector quantization code has rate Rs. Based
on the analysis of [4], the power constraint at each transmitter
implies

γ2
aσ

2
s + γ2

dσ
2
s

(
1− 2−2Rs

)
+ 2γaγdσ

2
s

(
1− 2−2Rs

)
≤ P

⇐⇒ 2−2Rsγ2
a +

(
1− 2−2Rs

)
(γa + γd)2 ≤ P

σ2
s

. (7)

Note that γa and γd determines the power split between the
“analog” (uncoded transmission) part and the “digital” (vector-
quantized) part.

Following the same line of analysis as in [4], we obtain the
following theorem regarding the achievable distortion of the
superposition scheme.

Theorem 3: Let Ds
super denote the achievable distortion

by the superposition scheme. For any γa, γd, Rs satisfy-
ing (7) and the constraint (4) on the top of this page,
where Kz := No + 2γ2

aσ
2
s

[
1+ρs

1+ρs(1−2−2Rs )

]
2−2Rs , we have

the following achievable distortion Ds
super = Ds

VQ − Is,

where Ds
VQ = σ2

s

{
2−2Rs+(1−ρ2s)(1−2−2Rs)(α2+β2)

1−ρ2s(1−2−2Rs )2

}
2−2Rs

and Is = σ2
s

γ2
aσ

2
s(α+β)2

„
1+ρs

1+ρs(1−2−2Rs )

«2

2−4Rs

No+2γ2
aσ

2
s

„
1+ρs

1+ρs(1−2−2Rs )

«
2−2Rs

.

Proof: The proof follows from the analysis of decoding
error probability in [4], along with a straightforward calcula-
tion of MMSE estimation error.

Note that the above power constraint (7) allows γaγd < 0,
but we shall constrain to (γa, γd) satisfying (7) with equality
and

0 ≤ γa ≤

√
P

σ2
s

, 0 ≤ γd ≤

√
P

σ2
s (1− 2−2Rs)

(8)

in the rest of this paper, and show that a proper choice of the
power split can achieve the high-SNR asymptotic distortion
lower bound given in Corollary 1.

To proceed, we first simplify the rate constraint (4)
and pick a manageable R∗s satisfying (4). It is not hard
to evaluate that the right-hand-side of (4) is equal to
1
2 log

(
No+2(1+ρs)P−2γ2

dσ
2
s(1−2−2Rs)ρs2−2Rs

No(1−ρ2s(1−2−2Rs )2)+2γ2
aσ

2
s(1+ρs)(1−ρs(1−2−2Rs ))2−2Rs

)
.

Next, we lower bound this term by plugging
γd =

√
P

σ2
s(1−2−2Rs )

into the numerator:

No + 2 (1 + ρs)P − 2γ2
dσ

2
s

(
1− 2−2Rs

)
ρs2−2Rs

≥ No + 2P
(
1 + ρs

(
1− 2−2Rs

))
≥ 2P

(
1 + ρs

(
1− 2−2Rs

))
.

We shall choose γa such that 2γ2
aσ

2
s/No = κηλc , where

0 ≤ κ ≤ 2η1−λ
c and 0 ≤ λ ≤ 1. In other words, we set the

SNR of the uncoded part scale as Θ
(
ηλc
)

and satisfy (8). With
such choice and the lower bounding procedure above, we pick
R∗s such that it satisfies (5) on the top of this page.

With different choices of λ, the scaling of 2−2R∗s with re-
spect to ηc will be different. The following lemma summarizes
the behavior.

Lemma 2: 2−2R∗s = Θ
(
η
max{−1/2,λ−1}
c

)
Proof: It is straightforward to see that rate R∗s →

∞ as ηc → ∞. Hence, 2−2R∗s → 0 as ηc → ∞.
Therefore, as ηc → ∞, the right-hand-side (RHS) of (5)

approaches

√
(1−ρs)(1+κηλc 2−2R∗s )

2ηc
∼

√
(1+κηλc 2−2R∗s )

ηc
∼√

max(1,κηλc 2−2R∗s )
ηc

. Hence 2−2R∗s = Θ
(
η
max{−1/2,λ−1}
c

)
.

We shall make use of this lemma to show that, only the
choice λ = 1/2 can attain the distortion lower bound given in
Corollary 1. Moreover, there is a unique choice of κ that can
attain it. This result is summarized in the following theorem.



Theorem 4: The following choice of λ and κ is the only
one that can attain the distortion lower bound in Corollary 1:

λ =
1
2
, κ =

√
2

1− ρs

(
4αβ

|α2 − β2|

)
Proof: If 0 ≤ λ < 1/2, by Lemma 2 we have 2−2R∗s =

Θ
(
η
−1/2
c

)
and hence κηλc 2−2R∗s → 0 as ηc →∞. Therefore,

Ds
VQ = σ2

s

{
2−2R∗s+(1−ρ2s)

“
1−2−2R∗s

”
(α2+β2)

1−ρ2s(1−2−2R∗s )2

}
2−2R∗s

= Θ
(
η−1/2
c

)
,

Is = σ2
s


No
2 κηλc (α+β)2

 
1+ρs

1+ρs(1−2−2R∗s )

!2

2−4R∗s

No+Noκηλc

 
1+ρs

1+ρs(1−2−2R∗s )

!
2−2R∗s


= Θ

(
ηλ−1
c

)
.

Hence Ds
super = Θ

(
η
−1/2
c

)
. Then, limηc→∞

√
ηcD

s
super =

limηc→∞
√
ηcD

s
VQ and

lim
ηc→∞

√
ηcD

s
VQ = σ2

s

(
α2 + β2

)
lim
ηc→∞

√
ηc2−2R∗s

= σ2
s

(
α2 + β2

)√1− ρs
2

> σ2
s

√
1− ρs

2

∣∣α2 − β2
∣∣ .

We conclude that it cannot achieve the distortion lower bound.
If 1/2 < λ ≤ 1, by Lemma 2 we have 2−2R∗s = Θ

(
ηλ−1
c

)
.

Hence Ds
VQ = Θ

(
ηλ−1
c

)
and Is = Θ

(
ηλ−1
c

)
. Therefore,

Ds
super = Θ

(
ηλ−1
c

)
and cannot achieve even the same scaling

as the distortion lower bound in Corollary 1.
From the above discussion, we conclude that λ has to be

1/2. With λ = 1/2, note that since 2−2R∗s = Θ
(
η
−1/2
c

)
and

√
ηc2−2R∗s =

√
1−ρs(1−2−2R∗s )

2

[
1 +

(1+ρs)(κηλc 2−2R∗s )
1+ρs(1−2−2R∗s )

]
, we

see that limηc→∞
√
ηc2−2R∗s = X∗ where X∗ is the positive

root of the quadratic equation X2 = 1−ρs
2 (1 + κX). It is easy

to solve it and get limηc→∞
√
ηc2−2R∗s = X∗ = 1−ρs

4 κ +√
1−ρs

2 + (1−ρs)2
16 κ2.

The corresponding distortion asymptotic is

limηc→∞
√
ηcD

s
VQ = σ2

sX
∗ (α2 + β2

)
limηc→∞

√
ηcIs = σ2

sX
∗
( 1

2 (α+β)2κX∗

1+κX∗

) }⇒
lim
ηc→∞

√
ηcD

s
super = σ2

sX
∗

(
α2 + β2 −

1
2 (α+ β)2 κX∗

1 + κX∗

)
.

To obtain the distortion lower bound, we need to find κ sat-
isfying

√
1−ρs

2

∣∣α2 − β2
∣∣ = X∗

(
α2 + β2 −

1
2 (α+β)2κX∗

1+κX∗

)
.

Plug in (X∗)2 = 1−ρs
2 (1 + κX∗) and after some manipula-

tions, we arrive at
(
X∗ − α+β

|α−β|

√
1−ρs

2

)2

= 0, which implies

that we should take X∗ = α+β
|α−β|

√
1−ρs

2 to attain the distortion
lower bound. Equivalently, the only value of κ that we should
take is κ∗ =

√
2

1−ρs

(
4αβ
|α2−β2|

)
. Proof complete.

We conclude this section by a remark on the optimal super-
position scheme in high-SNR regime. Note that if αβ = 0, we
are back to the problem studied in [4], which is reconstructing
the observations at the decoder. In this case, we see that
the optimal κ∗ = 0, meaning that the simply the vector-
quantization scheme is sufficient to achieve the optimal high-
SNR asymptotic performance.

IV. CONCLUDING REMARKS

Estimation-coding separation provides an elegant solution
to remote joint source-channel coding in the point-to-point
setting. When more encoders in the system take noisy mea-
surements of correlated sources, such separation is no longer
optimal. In this paper we investigated the problem of commu-
nicating two remote jointly Gaussian sources over a two-user
Gaussian MAC. We showed that in the Gaussian setting, the
problem is equivalent to reconstructing two linear combina-
tions of the observation (noisy measurements of the remote
sources). We characterized the optimal achievable distortion
up to a certain SNR threshold, where uncoded transmission
is optimal. We also characterized the high-SNR asymptotic of
the optimal distortion, where a superposition of an uncoded
scheme and a vector-quantizor scheme is required. Moreover,
we showed that in contrast to the direct problem studied in [4],
a significant amount of power should be allocated to uncoded
transmission: its effective SNR should scale as the square-root
of the overall SNR as the SNR tends to infinity.
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